La Inteligencia Artificial (IA) es la combinación de algoritmos planteados con el propósito de crear máquinas que presenten las mismas capacidades que el ser humano. Una tecnología que todavía nos resulta lejana y misteriosa, pero que desde hace unos años está presente en nuestro día a día a todas horas.

La inteligencia artificial (IA) hace posible que las máquinas aprendan de la experiencia, se ajusten a nuevas aportaciones y realicen tareas como seres humanos. La mayoría de los ejemplos de inteligencia artificial sobre los que oye hablar hoy día – desde computadoras que juegan ajedrez hasta automóviles de conducción autónoma – recurren mayormente al aprendizaje profundo y al procesamiento del lenguaje natural. Empleando estas tecnologías, las computadoras pueden ser entrenadas para realizar tareas específicas procesando grandes cantidades de datos y reconociendo patrones en los datos.

La investigación inicial de la inteligencia artificial en la década de 1950 exploraba temas como la solución de problemas y métodos simbólicos. En la década de 1960, el Departamento de Defensa de los Estados Unidos mostró interés en este tipo de trabajo y comenzó a entrenar computadoras para que imitaran el razonamiento humano básico. Por ejemplo, la Defense Advanced Research Projects Agency (DARPA, Agencia de Proyectos de Investigación Avanzada de Defensa) realizó proyectos de planimetría de calles en la década de 1970. Y DARPA produjo asistentes personales inteligentes en 2003, mucho tiempo antes que Siri, Alexa o Cortana fueran nombres comunes.

La inteligencia artificial automatiza el aprendizaje y descubrimiento repetitivos a través de datos. La inteligencia artificial es diferente de la automatización de robots basada en hardware. En lugar de automatizar tareas manuales, la inteligencia artificial realiza tareas computarizadas frecuentes de alto volumen de manera confiable y sin fatiga. Para este tipo de automatización, la investigación humana sigue siendo fundamental para configurar el sistema y hacer las preguntas correctas.

La inteligencia artificial analiza más datos y datos más profundos empleando redes neuronales que tienen muchas capas ocultas. Construir un sistema de detección de fraude con cinco capas ocultas era casi imposible hace unos años. Todo eso ha cambiado con increíble poder de cómputo y el Big Data. Se necesitan muchos datos para entrenar modelos de aprendizaje profundo porque aprenden directamente de los datos. Cuantos más datos les pueda proporcionar, más precisos se vuelven.

La inteligencia artificial saca el mayor provecho de los datos. Cuando los algoritmos son de autoaprendizaje, los datos mismos pueden volverse de propiedad intelectual. Las respuestas están en los datos; usted sólo tiene que aplicar inteligencia artificial para sacarlas a la luz. Como el rol de los datos es ahora más importante que nunca antes, pueden crear una ventaja competitiva. Si tiene los mejores datos en una industria competitiva, incluso si todos aplican técnicas similares, los mejores datos triunfarán.

La inteligencia artificial se adapta a través de algoritmos de aprendizaje progresivo para permitir que los datos realicen la programación. La inteligencia artificial encuentra estructura y regularidades en los datos de modo que el algoritmo adquiere una habilidad: el algoritmo se convierte en un clasificador o predictor. De este modo, así como el algoritmo puede aprender a jugar ajedrez, puede aprender también que producto recomendar a continuación en línea. Y los modelos se adaptan cuando se les proveen nuevos datos. La retropropagación es una técnica de inteligencia artificial que permite al modelo hacer ajustes, a través de capacitación y datos agregados, cuando la primera respuesta no es del todo correcta.

IA agrega inteligencia a productos existentes. En la mayoría de los casos, la inteligencia artificial no se venderá como aplicación individual. En su lugar, los productos que ya utiliza serán mejorados con recursos de inteligencia artificial, de forma muy similar en que se agregó Siri como característica a una nueva generación de productos de Apple. La automatización, las plataformas conversacionales, los bots y las máquinas inteligentes se pueden combinar con grandes cantidades de datos para mejorar muchas tecnologías en el hogar y en el lugar de trabajo, desde inteligencia de seguridad hasta análisis de las inversiones.

Entradas recomendadas

Aún no hay comentarios, ¡añada su voz abajo!


Añadir un comentario

Tu dirección de correo electrónico no será publicada.

cinco × 2 =